Injection molding is a process of shaping plastic by melting it and injecting it into a predesigned mold. The process was first designed in the 1930s and was originally based on metal die casting designs. It offers many advantages to alternative manufacturing methods, including minimal losses from scrap (since scrap pieces can be melted and recycled), and minimal finishing requirements. This process differs from metal die casting in that molten metals can simply be poured; plastic resins must be injected with force.
The process uses large injection molding machines, which advance the resins through six major processes to produce everything from computer parts to plastic Halloween spiders. Although this machine is a complex piece of equipment, it consists of two basic elements: the injection unit and the clamping unit.
The process starts with a mold, which is clamped under pressure to accommodate the injection and cooling process. Then, pelletized resins are fed into the machine, followed by the appropriate colorants. The resins then fall into an injection barrel, where they are heated to a melting point, and then injected into the mold through either a screw or ramming device.
Then comes the dwelling phase, in which the molten plastics are contained within the mold, and hydraulic or mechanical pressure is applied to make sure all of the cavities within the mold are filled. The plastics are then allowed to cool within the mold, which is then opened by separating the two halves of the mold. In the final step, the plastic part is ejected from the mold with ejecting pins. The completed part may contain extraneous bits called runners, which are trimmed off and recycled. The entire process is cyclical, with cycle times ranging from between ten and 100 seconds, depending on the required cooling time.
Read more: What is Injection Molding?